
Git Commands
Link to Git Cheat Sheet

Terms
working directory : Where you are coding (can be same as git directory)
staging area : Where you commit changes from working directory to git directory (but not
pushed in)
git directory : Where your local repository is hosted
local : Your git repository on your computer
remote : Git repository NOT on your computer, and you are pushing / pulling from
origin : Where the repository was ORGINALLY cloned (i.e. master version)
pull : Fetch from remote to local
push : Push from local to remote
commit hash : ID of commit
tree : contains a list/history of git changes
upstream : changes/commits that are in origin

Setting up
git version

Checks your git version
git config --global user.name "Your Name"

Your commit name
Leave "<>" blank to check current name

git config --global user.email "youremail@gmail.com
Your commit email
Leave "<>" blank to check current email

git config --list
Shows all config settings

git init
Creates a git repository at current directory (creates .git directory)
remove .git directory to remove git status

git add <filename>
-A add all files in current directory

https://wizardzines.com/git-cheat-sheet.pdf

Stages all files in current directory (adds to git repo)
git clone <URL>.git <cloning_directory>

Leaving <cloning_directory> blank to clone at current directory
URL should end with a .git to specify its a git repository
Some git services like GitHub are automatically detected so doesn't need the .git
--depth <no.> determines amount of commits to clone
--recurse-submodules clones submodules

git remote -v
Check if remote is the origin

git branch -a
List all branches in the local and remote

Basic Commands
git help <command>

Gets help for specific command
Alt: git <command> --help

git status
Shows status, includes:
Untracked files (fresh repo), Uncommited/commited changes, Conflicts
Use before pushing and pulling to check for possible conflicts!

git add <filename>
-A add all files in current directory
Stages files (adds to commit)

git commit -m "Commit Message"
Commit changes
Use without -m option to check full commit status in a code editor
Use with --amend to amend last commit

git log
Shows recent changes
q to quit, Return for next line

git diff
Shows any differences
optional: <commit-hash> <commit-hash> ; <branch-name> / head - latest -- --stat for a
condensed summary (file changes)
q to quit, Return for next line

git fetch
Fetches (download) from remote to local

git pull (origin) (branch)
Pulls from remote to local
bracketed items are optional (remove brackets!):
origin - specifies from origin directory
branch - specifies branch name, current branch by default

git push (origin) (branch)
Pushes from local to remote
bracketed items are optional (remove brackets!):
origin - specifies from origin directory
branch - specifies branch name, current branch by default
-u - set upstream (for pushing in a new branch from local to remote-origin)

git checkout <commit-hash>/<branch-name>
Switch your current git repository to a specific commit OR branch
git checkout main to switch back to latest
git checkout head ADVANCED: Detaches current commit from working tree
Leave option empty to get the current status

git branch <branch-name>
Creates a new branch based on current commit
Use checkout to specify specific commit / switch to new branch
Leave option empty to get the current branch you are on

git stash
Stash current changes

git stash show
Show stashed changes

git stash pop
Pop stash changes (unstash)

git mv <file_location> <new_location/new_name>
Rename / move existing files to another name / location
Useful for changing file name case (windows is non-case sensitive and won't detect
file name case changes)
git mv src/graphics.cpp src/GRAPHICS.cpp - renaming to uppercase
git mv src/graphics.cpp src/graphics/graphics_auto.cpp - renaming and moving

Merging
Squash and merge (makes your commitS into one large commit)

Merging from bugfix branch INTO master
git checkout master
git merge --squash bugfix
resolve conflicts....
git rebase
resolve conflicts....
git commit

Updating your own branch with stuff from master
git checkout <your_branch>
git rebase master
resolve conflicts....
git force -f

Why force?
Since rebase rewrites commit history, the previous version of the branch
is no longer valid.
A force push replaces the old local branch history with the rebased one,
removing the old, now obsolete commits.

Merge with rebase (retains all your commits and move them over)
Rebasing bugfix INTO master

git checkout bugfix
git rebase master
resolve conflicts....
git checkout master
git merge bugfix
push!

Git Large File Storage (LFS)
When adding files larger than 100mb, versioning for it will no longer be available, forcing the
repository to be completely usable, use git LFS to manage these large files

git lfs install : install LFS if you dont have it
git lfs track "filename" OR git lfs track "*.psd" <- tracks all files of specified type
git add .gitattributes - if git attributes doesn't exist! git attributes is used for tracking LFS
files
git add -A
git commit -m "Commit message"

Advanced Commands
WARNING : Commands below will might result in an unstable repository or overwritten changes
when used incorrectly! Use with care!

DANGER LEVEL
0. No danger (but access advanced data)
1. overwrites local changes (if no errors)
2. overwrites local & can affect remote changes
3. overwrites local & overwrites remote changes (poweruser!)

git rebase [1]
Compare between local and remote and tries to fix tree

git rebase origin/<branch name> [2]

i.e. git rebase origin/master rebases master branch to current branch, basically apply
master branch changes into current branch

git reset [1]
REMOVES unstaged / uncommitted changes
Resets repository to last state
--hard to force reset
<commit-hash> to reset to specific commit

git clean -fxd [1]
Force REMOVES all unstaged / uncommited changes

git push -f [3]
Does a force push, this REWRITES the remote tree with your local tree!

git reset --soft HEAD~3 [2]
Rewinds/undo the last 3 commits from current head, change 3 to any number

git add dir/dir2/ -f [2]
Force adds/stages directory, OVERWRITES gitignore
Replace with <filename> for file

git checkout --orphan [2]
Makes a new orphan branch with NO commit history

git rebase -i --root [3]
Allows manual rebasing in an interactive editor FROM starting of repo (root)
Changes made here will MESS UP your local tree unless you know what you are
doing
git rebase to reset rebased changes
git rebase -i <commit-hash> to specify starting commit
--root specifies starting commit to be from first

git rebase -i HEAD~3 [3]
Allows manual rebasing in an interactive editor FOR last 3 commits
Change the respective command in your text editor, i.e. pick to drop ; to affect the
commit

git fsck --unreachable [0]
show list of unreachable (dangling) commits

git gc --prune=now [3] - removes unused history!
remove all unreachable (dangling) commits

Cross-GUI Interations
github .

open github GUI at current location
replace . with folder path for specified location

explorer .
open file explorer at current location
replace . with folder path for specified location

typing in file explorer address path

cmd - open command prompt
powershell - open powershell

Helpful Windows CMD Commands
cd ..

Go to parent directory
cd <directory_name>

Go to next specified directory
dir

Display all files in current directory
help dir for list of sorting options
dir /os - file ordered by smallest size first
dir /o-s - file ordered by largest size first

rmdir /s /q <directory_name>
Force removes a directory and all its contents
/s Removes all directories and files in specified directory
/q Quiet mode: Do not ask if "Are you sure"

mkdir <folder_name>
Creates a new folder in current directory

echo your_text_here > filename.extension
Create file with echo

code filename.extension
Create file with vscode

notepad filename.extension
Create file with notepad

type filename.extension
Show file contents

del <file_name>
Delete singular file
/f Force delete (read-only etc)
/q Quiet mode: Do not ask if "Are you sure"
help del for list of deleting options

set <variable_name>=<contents>
Stores a variable, persistent in current cmd session
<contents> can be a command with %command%
i.e. set curpath=%cd% set variable curpath to current directory

echo %<variable_name>%
Echo variable
Surround with "<>" to create a string

%<variable_name>%
Utilise variable, use cases: for specifying directories etc

<filename>.exe/.bat

Execute said file, .bat is a bash script
.sh (shell script) is linux equivalent

<any-cmd> > filename.extension
Pipe results to specified file

Git Configurations
.gitignore
Excludes certain files from being pushed. Can be overriden with git add <> -f https://git-
scm.com/docs/gitignore

prefix !
Should be placed after all exclude criteria
Applied to any parameters, include said

*.extension
Exclude file extension

<folder_name>/
Exclude everything in folder
Use [Dd] for wildcard, specified allows D or d
i.e. [Dd]ebug/

.gitattributes
Various git config attributes Involves language statistics watcher https://git-
scm.com/docs/gitattributes

prefix *.extension
Exclude file extension
i.e. *.tex linguist-vendored

prefix <project-root>/<directory-1>/<directory-2>/**
Exclude directory
i.e. opengl-dev/lib/** linguist-vendored

prefix <filename.extension> -
Exclude specific file
i.e. jquery.js -linguist-vendored

option linguist-vendored
Exclude as vendored code (from library)

option linguist-documentation
Exclude as documentation

option linguist-generated
Exclude as generated files

option linguist-language=<language>
Reclassifies file to another language
i.e. *.rb linguist-language=Java

.gitkeep
Placeholder file for empty directories

Signing commits on github
git config commit.gpgsign true

Enable signed commits for current repository, switch to false to disable
git config --global commit.gpgsign true

Enable signed commits globally, switch to false to disable

Setting up (Using GPG)

1. Install GPG command line tools https://www.gnupg.org/download/ For windows, get
Gpg4win

2. Locate gpg.exe If following default installation path, should be under: C:\Program Files
(x86)\GnuPG\bin cd to said directory

3. gpg.exe --full-generate-key
4. kind of key: Enter to accept default
5. key size: Enter to accept default
6. length of time: Enter to accept default (doesn't expire)
7. Verify selections above
8. Enter your user ID information. For a private email address, use github provided no-reply !

Your no-reply github email is viewable under github website settings > Emails
(https://github.com/settings/emails) It will look something like this
ID+USERNAME@users.noreply.github.com or this USERNAME@users.noreply.github.com

9. Type a secure passphrase
10. Get list of keys with: gpg.exe --list-secret-keys --keyid-format=long
11. copy the ID, ID should be under sec right after first \ For example: sec

4096R/3AA5C34371567BD2 2016-03-10 [expires: 2017-03-10] 3AA5C34371567BD2 is the ID
12. gpg.exe --armor --export <INSERT_ID_HERE>
13. Copy the GPG key generated

14. Go to your github website settings > SSH and GPG keys (under Access section)
(https://github.com/settings/keys)

15. Click New GPG key
16. Confirm and authenticate
17. git config --global gpg.program "C:\Program Files (x86)\GnuPG\bin\gpg.exe" replace path there to

path to your gpg.exe if different
18. git config --global gpg.program gpg
19. git config --global user.signingkey <INSERT_ID_HERE>
20. Profit! Your key is stored and automatically applied as long as you are using the same

device with Cpg4win installed.

Removing passphrase

1. gpg --passwd <INSERT_ID_HERE>
2. Enter your passphrase as normal
3. Keep the new passphrase empty and accept the warnings
4. Repeat step 3
5. Passphrase is now removed for this device

Revision #14
Created 15 January 2024 07:08:56 by neinwhal
Updated 5 March 2025 05:23:55 by neinwhal

